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Half-lives of the heaviest measured r-process nuclides in the region of 26<7<56, derived from the 196 198 200 202 204 206
ANN Model [2], are compared with the experimental values and the pnORPA+ffGT by MASS NUMBER
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Recently measured, by T. Kurtukian-Nieto et al. [8], /i -decay half-lives (T,~) of eight heavy nuclei d
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