

Statistical global modeling of β -decay halflives systematics using **Multilayer Feedforward Neural Networks and Support Vector Machines**

SVRMs, which belong to the class of kernel methods, are systems based on the statistical VC theory.

Data Sets For Theory-Thin Modeling

Database	NuSet-B		Half-life Range	Decay Mode	
NuBase2003 [4]	Cutoff	10 ⁶ s	0.15 x 10 ⁻² s → ³⁵ Na 0.20 x 10 ⁶ s → ²⁴⁷ Pu	100% β ⁻	

Learning Validation Test

NuSet-B consists of 838 nuclides: 672 (~80%) of them have been <u>randomly</u> chosen to train the machines (learning set), 83 (~10%) to validate the learning procedure (validation set) and the remaining 83 (~10%) to evaluate the accuracy of the prediction

Results

	Learn	ning Set	Validation Set		Test Set	
Classes	N	RMSE	N	RMSE	N	RMSE

 $\mathsf{RM}\,\mathsf{SE} = \sqrt{\frac{1}{N}\sum_{i} \left(\mathsf{Log}_{10} \, \overset{\dagger}{\beta}_{\mathsf{calc}} - \mathsf{Log}_{10} \, \overset{\dagger}{\beta}_{\mathsf{exp}} \right)^2}$

(a) Current NN Calculation

EE	131	0.36	16	0.41	16	0.62
EO	179	0.38	22	0.44	22	0.39
OE	172	0.44	21	0.46	21	0.53
00	190	0.52	24	0.42	24	0.33
Total	672	0.41	83	0.44	83	0.51

(b) Current SVR Calculation [2]

EE	131	0.55	16	0.57	16	0.62
EO	179	0.41	22	0.42	22	0.51
OE	172	0.41	21	0.47	21	0.47
00	190	0.52	24	0.40	24	0.52
Total	672	0.47	83	0.46	83	0.53

		(c) Previou	is NN Calc	ulation [3]		
tal	-	1.08		-	-	1.8

References

Acknowledgements

This research has been supported in part by the U.S. National Science Foundation under Grant No. PHY-0140316 and by the University of Athens under Grant No.70/4/3309. We wish to thank G. Audi and his team for very helpful communications.

www.pythaim.phys.uoa.gr