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Abstract
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Reliable estimates of B--decay halflives for nuclei far from stability are needed by the experimental exploration of the nuclear landscape at existing and future
radioactive ion-beam facilities and by ongoing major efforts in astrophysics towards understanding of supernova explosions, and the processes of

nucleosynthesis, notably the r-process.

A constellation of theory-driven, macroscopic or semi-microscopic models has been developed during the last decades for generating B-decay halflives. However,
the predictive power of these theory-thick models is rather limited. The recent advances in Artificial Intelligence (Al) algorithms and in statistical learning
theory, present on the other hand the opportunity to develop statistical, data-driven models of quantum systems exhibiting remarkable predictive power [1-3].

In this work, the beta-decay halflives problem is dealt as a nonlinear optimization problem, which is resolved in the statistical framework of machine learning.
Continuing past similar approaches [3], we construct more sophisticated Artificial Neural Network (NN) and Support Vector Regression Machine (SVRM) [2]
methods to global model the systematics of nuclei that decay 100% by the B~ mode in their ground states. The arising large-scale lifetime calculations generated
by both types of machines are discussed and compared with the available experimental data [4], with previous results obtained with neural networks [3], as well
as with estimates coming from traditional global nuclear models. Particular attention is paid on the estimates for exotic and halo nuclei and we focus to those
nuclides that are involved in the r-process nucleosynthesis. It seems that both NNs and SVRVs demonstrate similar performance and that our statistical,
theory-thin, large-scale calculations can surpass the predictive performance of the best conventional global calculations.

Main Theory-Thick Global Models
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Data Sets For Theory-Thin Modeling
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NN & SVRM Learning Machines

NNs are systems, consisting of interconnected dynamical units
(neurons) that are typically arranged in a distinct layered
topology.

SVRMs, which belong to the class of kernel methods, are
systems based on the statistical VC theory.

Comparison with the experimental data
Learning Set Validation Set Test Set
Classes N RMSE N RMSE N RMSE
(a) Current NN Calculation
EE 131 0.36 16 0.41 16 0.62
EO 179 0.38 22 0.44 22 0.39
OE 172 0.44 21 0.46 21 0.53
00 190 0.52 24 0.42 24 0.33
Total 672 0.41 83 0.44 83 0.51
(b) Current SVR Calculation [2]
EE 131 0.55 16 0.57 16 0.62
EO 179 0.41 22 0.42 22 0.51
OE 172 0.41 21 0.47 21 0.47
00 190 0.52 24 0.40 24 0.52
Total 672 0.47 83 0.46 83 0.53

(c) Previous NN Calculation [3]

Total - 1.08 - - - 1.82

Fundamental Beta-Decay Question

The subdivision of the sets in four parity classes can lead to
spurious fluctuations. This favors the use of the NN model
developed recently by means of the whole basis [1].

Decaying nuclides on or near the r-process path. Netfull sets-1
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